Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System

Fernanda G. De Felice,1,2,3,* Fernanda Tovar-Moll,4,5 Jorge Moll,5 Douglas P. Munoz,2 and Sergio T. Ferreira1,6

Emerging evidence indicates that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can cause neurological complications. We provide a brief overview of these recent observations and discuss some of their possible implications. In particular, given the global dimension of the current pandemic, we highlight the need to consider the possible long-term impact of COVID-19, potentially including neurological and neurodegenerative disorders.

Coronaviruses, SARS-CoV-2, and Their Impact on Multiple Organ Systems

Coronaviruses (CoVs) are the largest group of viruses that cause respiratory and gastrointestinal infections, and have been responsible for three pandemics in the past 18 years: severe acute respiratory syndrome (SARS) in 2002/2003, Middle East respiratory syndrome (MERS) in 2012 and, currently, coronavirus disease 2019 (COVID-19). SARS-CoV-2, the etiologic agent of COVID-19, is a novel member of the human CoV family that emerged in China in late 2019. The symptoms of COVID-19 can include fever, cough, loss of smell and taste, sore throat, leg pain, headache, diarrhea, and fatigue. Although most patients infected with SARS-CoV-2 are asymptomatic or develop mild to moderate symptoms, a subset of patients develop pneumonia and severe dyspnea, and require intensive care. Because acute respiratory syndrome is the hallmark feature of severe COVID-19, most initial studies on COVID-19 have focused on its impact on the respiratory system. However, accumulating evidence suggests that SARS-CoV-2 also infects other organs and can affect various body systems. As many scientists have already noted, these emerging findings call for investigations into the short- and long-term consequences of COVID-19 beyond the respiratory system. In the next sections we briefly discuss recent observations suggesting an association between SARS-CoV-2 infection and neurological complications. We place these findings in the context of previous studies demonstrating that various viruses, including CoVs, can have effects on the central nervous system (CNS). Lastly, we highlight the possibility that SARS-CoV-2 infection could promote or enhance susceptibility to other forms of CNS insults that may lead to neurological syndromes. Given scope limitations, we offer only a sample of the substantial literature on the CNS impact of viral infection, with the purpose of underscoring some of the sequelae and mechanisms that may be involved in the context of COVID-19, and that require further investigation.

Possible Neurotropism of SARS-CoV-2

Cerebrovascular diseases are among the comorbidities of patients with confirmed COVID-19 who develop severe respiratory complications [1]. For example, one study reported hypoxic/ischemic encephalopathy in ~20% of 113 deceased patients with COVID-19 [2]. A recent study evaluated 214 patients diagnosed with COVID-19 from China and found that 36% had neurological manifestations, including acute cerebrovascular disease and impaired consciousness [3]; a case of acute hemorrhagic necrotizing encephalopathy has also been reported [4]. Connections between viral infections and CNS pathologies are not new. The aforementioned observations on COVID-19 are in line with a report of severe neurological manifestations associated with MERS-CoV infection in Saudi Arabia [5]. With regards to SARS-CoV-2 specifically, current evidence remains scarce and additional work is needed on whether other neurological manifestations occur in COVID-19 patient populations beyond those of the initial studies. It will also be important to determine whether SARS-CoV-2 is detected in the cerebrospinal fluid (CSF) of patients who develop neurological alterations, and/or whether other CSF alterations are present (see Outstanding Questions). CSF studies will be necessary, in part, to better understand the neurotropism of SARS-CoV-2 and to evaluate whether its impact on the CNS is through direct infection or via secondary effects relating to enhanced inflammatory/proinflammatory signaling.

Human CoVs and Other Neurotropic Viruses Affect the CNS

Although studies testing whether SARS-CoV-2 targets the brain in humans or in animal models are not yet available, it is well established in the literature that other viruses target the CNS and cause neurological alterations, including brain inflammation and encephalomyelitis [6]. For example, human CoV-OC43 has been associated with fatal encephalitis in children in [7,8]. Detection of SARS-CoV RNA in the CSF of a patient with SARS has been reported [9]. Preclinical studies have further shown that human (e.g., HCoV-OC43) as well as animal CoVs reach the CNS and cause encephalitis [6]. In addition, CoV antigen and RNA have been found in human brain tissue and CSF in multiple sclerosis (MS) patients [10], and CoVs have been implicated as putative etiologic agents of...
CNS autoimmunity, including MS. There are also indications of possible relevance to neurodegenerative diseases. For example, CoV-OC43 and CoV-229E have been found in the CSF of Parkinson’s disease patients [11]. Of note, early preclinical studies showed that intranasal/intracocular inoculation in non-human primates [12] led to detection of CoV RNA or antigen in the brain, and post-mortem analyses indicated the presence of brain pathology, including inflammation and white matter edema. Future studies may reveal whether the intranasal route of infection is connected to anosmia (loss of sense of smell) that is described as a frequent and early symptom of COVID-19 [13].

Studies on CNS invasion by neurotropic viruses, and on the underlying mechanisms leading to neuroinflammation and neurological symptoms, have made significant strides in recent years (e.g., [14,15]). These studies may provide guidance on key areas of investigation to clarify whether and how SARS-CoV-2 affects the CNS. Notably, brain inflammation has been shown to underlie, at least in part, CNS damage associated with infection by West Nile, Zika, and herpes simplex viruses, conditions in which long-lasting inflammatory processes develop within the CNS. In addition, the intense systemic inflammatory response linked to viral infection can lead to blood–brain barrier (BBB) breakdown. This in turn can allow peripheral cytokines to gain access to the CNS, where they may trigger or exacerbate neuroinflammation leading to encephalitis [15].

Possible Long-Term CNS Consequences of SARS-CoV-2 Infection

Human neurodegenerative diseases often involve a gradual process that evolves, in some cases, over several decades. Large numbers of young adults worldwide are now infected, or will be infected in the near future, by SARS-CoV-2. For some, the severity of the disease will require hospitalization, opening up the possibility of detailed medical examination which could be leveraged for longitudinal studies, as discussed later. Literature on previously studied viruses raises the possibility that SARS-CoV-2 may affect the CNS. The inflammatory response elicited in acute or chronic infection may trigger or accelerate early and subclinical mechanisms that underlie the earliest stages of neurodegenerative disorders. Moreover, because findings in neurodegenerative diseases and other viral infections suggest that systemic inflammatory mediators may access the CNS and trigger damage via impaired BBB function, systemic inflammation triggered by SARS-CoV-2 infection may further contribute to neuroinflammatory processes and increase susceptibility to neurological syndromes. CNS infections may thus promote the development of neurodegenerative disease in individuals already at risk. There is an urgent need for longitudinal studies to determine whether the COVID-19 pandemic will lead to enhanced incidence of neurodegenerative disorders in infected individuals (Box 1).

To conclude, emerging evidence suggests that SARS-CoV-2 is associated with neurological alterations in COVID-19 patients presenting with severe clinical manifestations. Three general scenarios are feasible. Specifically, the impact of SARS-CoV-2 on the CNS could (i) lead to neurological alterations directly, (ii) worsen pre-existing neurological conditions, and/or (iii) increase susceptibility to or aggravate damage caused by other insults. Given the global dimension of the current pandemic and the high transmissibility of SARS-CoV-2, the evidence discussed earlier raises concerns regarding the potential long-term CNS consequences of COVID-19 (Box 1).

Box 1. A Roadmap for Research into the CNS Impact of SARS-CoV-2

There is a need to investigate whether and to what extent neurological alterations are observed in distinct COVID-19 patient groups, for example in immunocompetent/immunosuppressed individuals, as well as in patients with cardiovascular or metabolic disorders. In animal models, investigations should address whether infection by SARS-CoV-2 via different routes (intravenous, intranasal) induces neuroinflammation and neurodegeneration.

For patients under intensive care, who are likely to develop an intense systemic inflammatory response to viral infection, blood samples and CSF (whenever possible) should be collected longitudinally for evaluation of systemic and CNS inflammatory markers.

It will be crucial to conduct detailed cognitive testing on COVID-19 patients to detect possible cognitive impairments, as well as longitudinal studies that include brain imaging, neurological, and neuropsychological evaluation to examine multiple cognitive domains.

In patients who develop severe neurological complications, whenever possible, investigation of CSF samples for the presence of viral antigen/RNA and inflammatory mediators would be valuable to determine direct CNS infection. In addition, investigation of post-mortem brain and spinal cord tissue from deceased COVID-19 individuals (where possible) may provide evidence for parenchymal infection.
We propose that follow-up of severe COVID-19 patients should include careful clinical, imaging, and laboratory neurological assessment to determine to what extent the interplay between central and systemic infection drives CNS damage and neurological alterations. From where we now stand, it seems possible that, as currently infected individuals age in the coming years and decades, the systemic and/or brain inflammatory response elicited by SARS-CoV-2 infection may trigger long-term mechanisms leading to a widespread increase in the incidence of neurological and neurodegenerative disorders.

Acknowledgments

Work in the laboratories of the authors was supported by grants from Alzheimer’s Society Canada and the Weston Brain Institute (to F.G.D.F), the National Institute for Translational Neuroscience (INNT/Brazil) (to S.T.F., F.G.D.F, F.T-M., and J.M.), the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (to S.T.F., F.G.D.F, F.T-M., and J.M.), and from the Canadian Institutes of Health Research (CIHR) and Ontario Brain Institute (to D.P.M.).

References

1. Yang, X. et al. (2020) Clinical course and outcomes of critically Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 Q72 Q73 Q74 Q75 Q76 Q77 Q78 Q79 Q80 Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90 Q91 Q92 Q93 Q94 Q95 Q96 Q97 Q98 Q99 Q100 Q101 Q102 Q103 Q104 Q105 Q106 Q107 Q108 Q109 Q110 Q111 Q112 Q113 Q114 Q115 Q116 Q117 Q118 Q119 Q120 Q121 Q122 Q123 Q124 Q125 Q126 Q127 Q128 Q129 Q130 Q131 Q132 Q133 Q134 Q135 Q136 Q137 Q138 Q139 Q140 Q141 Q142 Q143 Q144 Q145 Q146 Q147 Q148 Q149 Q150 Q151 Q152 Q153 Q154 Q155 Q156 Q157 Q158 Q159 Q160 Q161 Q162 Q163 Q164 Q165 Q166 Q167 Q168 Q169 Q170 Q171 Q172 Q173 Q174 Q175 Q176 Q177 Q178 Q179 Q180 Q181 Q182 Q183 Q184 Q185 Q186 Q187 Q188 Q189 Q190 Q191 Q192 Q193 Q194 Q195 Q196 Q197 Q198 Q199 Q200 Q201 Q202 Q203 Q204 Q205 Q206 Q207 Q208 Q209 Q210 Q211 Q212 Q213 Q214 Q215 Q216 Q217 Q218 Q219 Q220 Q221 Q222 Q223 Q224 Q225 Q226 Q227 Q228 Q229 Q230 Q231 Q232 Q233 Q234 Q235 Q236 Q237 Q238 Q239 Q240 Q241 Q242 Q243 Q244 Q245 Q246 Q247 Q248 Q249 Q250 Q251